当前位置: 首页 > 内训课程 > 课程内容
广告1
相关热门公开课程更多 》
相关热门内训课程更多 》
相关最新下载资料

大数据建模与模型优化实战培训

课程编号:32159

课程价格:¥26000/天

课程时长:3 天

课程人气:400

行业类别:行业通用     

专业类别:大数据 

授课讲师:傅一航

  • 课程说明
  • 讲师介绍
  • 选择同类课
【培训对象】
业务支撑、网络中心、IT系统部、数据分析部等对业务数据分析有较高要求的相关专业人员。

【培训收益】


第一部分:数据建模流程
1、预测建模六步法
选择模型:基于业务选择恰当的数据模型
特征工程:选择对目标变量有显著影响的属性来建模
训练模型:采用合适的算法对模型进行训练,寻找到最优参数
评估模型:进行评估模型的质量,判断模型是否可用
优化模型:如果评估结果不理想,则需要对模型进行优化
应用模型:如果评估结果满足要求,则可应用模型于业务场景
2、数据挖掘常用的模型
定量预测模型:回归预测、时序预测等
定性预测模型:逻辑回归、决策树、神经网络、支持向量机等
市场细分:聚类、RFM、PCA等
产品推荐:关联分析、协同过滤等
产品优化:回归、随机效用等
产品定价:定价策略/最优定价等
3、特征工程/特征选择/变量降维
基于变量本身特征
基于相关性判断
因子合并(PCA等)
IV值筛选(评分卡使用)
基于信息增益判断(决策树使用)
4、模型评估
模型质量评估指标:R^2、正确率/查全率/查准率/特异性等
预测值评估指标:MAD、MSE/RMSE、MAPE、概率等
模型评估方法:留出法、K拆交叉验证、自助法等
其它评估:过拟合评估、残差检验
5、模型优化
优化模型:选择新模型/修改模型
优化数据:新增显著自变量
优化公式:采用新的计算公式
集成思想:Bagging/Boosting/Stacking
6、常用预测模型介绍
时序预测模型
回归预测模型
分类预测模型
第二部分:建模特征工程
问题:如何选择合适的属性/特征来建模呢?选择的依据是什么?比如价格是否可用于产品销量预测?
1、数据预处理vs特征工程
2、特征工程处理内容
变量变换
变量派生
变量精简(特征选择、因子合并)
类型转换
3、特征选择常用方法
相关分析、方差分析、卡方检验
4、相关分析(衡量两数据型变量的线性相关性)
相关分析简介
相关分析的应用场景
相关分析的种类
简单相关分析
偏相关分析
距离相关分析
相关系数的三种计算公式
Pearson相关系数
Spearman相关系数
Kendall相关系数
相关分析的假设检验
相关分析的四个基本步骤
演练:营销费用会影响销售额吗?影响程度如何量化?
演练:哪些因素与汽车销量有相关性
演练:影响用户消费水平的因素会有哪些
偏相关分析
偏相关原理:排除不可控因素后的两变量的相关性
偏相关系数的计算公式
偏相关分析的适用场景
距离相关分析
5、方差分析(衡量类别变量与数值变量间的相关性)
方差分析的应用场景
方差分析的三个种类
单因素方差分析
多因素方差分析
协方差分析
单因素方差分析的原理
方差分析的四个步骤
解读方差分析结果的两个要点
演练:摆放位置与销量有关吗
演练:客户学历对消费水平的影响分析
演练:广告和价格是影响终端销量的关键因素吗
演练:营业员的性别、技能级别对产品销量有影响吗
演练:寻找影响产品销量的关键因素
多因素方差分析原理
多因素方差分析的作用
多因素方差结果的解读
演练:广告形式、地区对销量的影响因素分析
协方差分析原理
协方差分析的适用场景
演练:排除产品价格,收入对销量有影响吗?
6、列联分析/卡方检验(两类别变量的相关性分析)
交叉表与列联表:计数值与期望值
卡方检验的原理
卡方检验的几个计算公式
列联表分析的适用场景
案例:套餐类型对客户流失的影响分析
案例:学历对业务套餐偏好的影响分析
案例:行业/规模对风控的影响分析
第三部分:线性回归模型
营销问题:如何预测未来的产品销量/销售额?如果产品跟随季节性变动,该如何预测?
1、回归分析简介和原理
2、回归分析的种类
一元回归/多元回归
线性回归/非线性回归
3、常用回归分析方法
散点图+趋势线(一元)
线性回归工具(多元线性)
规划求解工具(非线性回归)
演练:散点图找营销费用与销售额的关系
4、线性回归分析的五个步骤
演练:营销费用、办公费用与销售额的关系(线性回归)
5、线性回归方程的解读技巧
定性描述:正相关/负相关
定量描述:自变量变化导致因变量的变化程度
6、回归预测模型评估
质量评估指标:判定系数R^2
如何选择最佳回归模型
演练:如何选择最佳的回归预测模型(一元曲线回归)
7、带分类自变量的回归预测
演练:汽车季度销量预测
演练:工龄、性别与终端销量的关系
演练:如何评估销售目标与资源最佳配置
8、自动筛选不显著因素(自变量)
第四部分:回归模型优化
1、回归分析的基本原理
三个基本概念:总变差、回归变差、剩余变差
方程的显著性检验:方程可用性
因素的显著性检验:因素可用性
方程拟合优度检验:质量好坏程度
理解标准误差含义:预测准确性?
2、回归模型优化措施:寻找最佳回归拟合线
如何处理预测离群值(剔除离群值)
如何剔除不显著因素(剔除不显著因素)
如何进行非线性关系检验(增加非线性自变量)
如何进行相互作用检验(增加相互作用自变量)
如何进行多重共线性检验(剔除共线性自变量)
演练:模型优化演示
3、好模型都是优化出来的
第五部分:自定义回归模型
1、回归建模的本质
2、规划求解工具简介
3、自定义回归模型
案例:如何对客流量进行建模预测及模型优化
4、回归季节预测模型模型
回归季节模型的原理及应用场景
加法季节模型
乘法季节模型
模型解读
案例:美国航空旅客里程的季节性趋势分析
5、新产品累计销量的S曲线
S曲线模型的应用场景(最大累计销量及销量增长的拐点)
珀尔曲线
龚铂兹曲线
案例:如何预测产品的销售增长拐点,以及销量上限
演练:预测IPad产品的销量

第六部分:定量模型评估
1、定量预测模型的评估
方程显著性评估
因素显著性评估
拟合优度的评估
估计标准误差评估
预测值准确度评估
2、模型拟合度评估
判定系数:
调整判定系数:
3、预测值准确度评估
平均绝对误差:MAE
根均方差:RMSE
平均误差率:MAPE
4、其它评估:残差检验、过拟合检验
第七部分:时序预测模型
营销问题:像利率/CPI/GDP等按时序变化的指标如何预测?当销量随季节周期变动时该如何预测?
1、回归预测vs时序预测
2、因素分解思想
3、时序预测常用模型
趋势拟合
季节拟合
平均序列拟合
4、评估预测值的准确度指标:MAD、RMSE、MAPE
5、移动平均(MA)
应用场景及原理
移动平均种类
一次移动平均
二次移动平均
加权移动平均
移动平均比率法
移动平均关键问题
如何选取最优参数N
如何确定最优权重系数
演练:平板电脑销量预测及评估
演练:快销产品季节销量预测及评估
6、指数平滑(ES)
应用场景及原理
最优平滑系数的选取原则
指数平滑种类
一次指数平滑
二次指数平滑(Brown线性、Holt线性、Holt指数、阻尼线性、阻尼指数)
三次指数平滑
演练:煤炭产量预测
演练:航空旅客量预测及评估
7、温特斯季节预测模型
适用场景及原理
Holt-Winters加法模型
Holt-Winters乘法模型
演练:汽车销量预测及评估
8、平稳序列模型(ARIMA)
序列的平稳性检验
平稳序列的拟合模型
AR(p)自回归模型
MA(q)移动模型
ARMA(p,q)自回归移动模型
模型的识别与定阶
ACF图/PACF图
最小信息准则
序列平稳化处理
变量变换
k次差分
d阶差分
ARIMA(p,d,q)模型
演练:上海证券交易所综合指数收益率序列分析
演练:服装销售数据季节性趋势预测分析
平稳序列的建模流程
第八部分:分类预测模型
问题:如何评估客户购买产品的可能性?如何预测客户的购买行为?如何提取某类客户的典型特征?如何向客户精准推荐产品或业务?
1、分类模型概述及其应用场景
2、常见分类预测模型
3、逻辑回归(LR)
逻辑回归的适用场景
逻辑回归的模型原理
逻辑回归分类的几何意义
逻辑回归的种类
二项逻辑回归
多项逻辑回归
如何解读逻辑回归方程
带分类自变量的逻辑回归分析
多项逻辑回归/多分类逻辑回归
案例:如何评估用户是否会购买某产品(二项逻辑回归)
案例:多品牌选择模型分析(多项逻辑回归)
4、分类决策树(DT)
问题:如何预测客户行为?如何识别潜在客户?
风控:如何识别欠贷者的特征,以及预测欠贷概率?
客户保有:如何识别流失客户特征,以及预测客户流失概率?
决策树分类简介
案例:美国零售商(Target)如何预测少女怀孕
演练:识别银行欠货风险,提取欠贷者的特征
决策树分类的几何意义
构建决策树的三个关键问题
如何选择最佳属性来构建节点
如何分裂变量
修剪决策树
选择最优属性生长
熵、基尼索引、分类错误
属性划分增益
如何分裂变量
多元划分与二元划分
连续变量离散化(最优分割点)
修剪决策树
剪枝原则
预剪枝与后剪枝
构建决策树的四个算法
C5.0、CHAID、CART、QUEST
各种算法的比较
如何选择最优分类模型?
案例:商场用户的典型特征提取
案例:客户流失预警与客户挽留
案例:识别拖欠银行货款者的特征,避免不良货款
案例:识别电信诈骗者嘴脸,让通信更安全
多分类决策树
案例:不同套餐用户的典型特征
决策树模型的保存与应用
5、人工神经网络(ANN)
神经网络概述
神经网络基本原理
神经网络的结构
神经网络分类的几何意义
神经网络的建立步骤
神经网络的关键问题
BP反向传播网络(MLP)
径向基网络(RBF)
案例:评估银行用户拖欠货款的概率
6、判别分析(DA)
判别分析原理
判别分析种类
Fisher线性判别分析
案例:MBA学生录取判别分析
案例:上市公司类别评估
7、最近邻分类(KNN)
KNN模型的基本原理
KNN分类的几何意义
K近邻的关键问题
8、支持向量机(SVM)
SVM基本原理
线性可分问题:最大边界超平面
线性不可分问题:特征空间的转换
维灾难与核函数
9、贝叶斯分类(NBN)
贝叶斯分类原理
计算类别属性的条件概率
估计连续属性的条件概率
预测分类概率(计算概率)
拉普拉斯修正
案例:评估银行用户拖欠货款的概率
第九部分:定性模型评估
1、模型的评估指标
两大矩阵:混淆矩阵,代价矩阵
六大指标:Acc,P,R,Spec,F1,lift
三条曲线:
ROC曲线和AUC
PR曲线和BEP
KS曲线和KS值
2、模型的评估方法
原始评估法
留出法(Hold-Out)
交叉验证法(k-fold cross validation)
自助采样法(Bootstrapping)
第十部分:模型集成优化
1、模型的优化思路
2、集成算法基本原理
单独构建多个弱分类器
多个弱分类器组合投票,决定预测结果
3、集成方法的种类
Bagging
Boosting
Stacking
4、Bagging集成
数据/属性重抽样
决策依据:少数服从多数
典型模型:随机森林RF
5、Boosting集成
基于误分数据建模
样本选择权重更新公式
决策依据:加权投票
典型模型:AdaBoost模型
6、其它高级集成算法:GBDT,XGBoost等
结束:课程总结与问题答疑。 

咨询电话:
0571-86155444
咨询热线:
  • 微信:13857108608
联系我们